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A GENERALIZED QUANTILE ESTIMATOR UNDER CENSORING

Y. L. Lio and W. J. Padgett

Department of Statistics
University of South Carolina

Columbia, SC 29208

ABSTRACT

Based on right-censored data from a lifetime distribution Fo,

a smooth alternative to the product-limit estimator as a

nonparametric quantile estimator of a population quantile is

proposed. The estimator is a "generalized product-limit quantile"

obtained by averaging appropriate subsample product-limit

quantiles over all subsamples of a fixed size. Under the random

' censorship model and some conditions on Fo, it is shown that the

estimator is consistent and has the same asymptotic normal

distribution as the product-limit quantile estimator. A small

Monte Carlo simulation study shows that there exist some values of

the subsample size for which the estimator performs better than

the product-limit quantile estimator in the sense of estimated

mean squared errors.

1. INTRODUCTION

Arbitrarily right-censored data arise naturally in industrial

life testing and medical follow-up studies. In these situations it

is important to be able to obtain nonparametric estimates of

various characteristics of the survival function S. One
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characteristic of the survival distribution that is of interest is

the quantile function. For any probability distribution function

G, the quantile function is defined by Q(p)G-l (p)=

inf(x: G(x) p), 0 < p < 1.

For a random (uncensored) sample Xl,...,X n from G, the sample

quantile function G l(p)=inf( x: Gn(X) p), 0< p 1, has been
n nl

used to estimate , here Gn (x) denotes the empirical

distribution function. Cs8rgo (1983) gave many of the known

results concerning Gnl(p). Kaigh and Lachenbruch (1982)

considered a "generalized sample quantile" obtained by averaging

an appropriate subsample quantile over all subsamples of a given

size.

For arbitrarily right-censored data, Sander (1975) proposed

estimation of by the quantile function of the product-limit

(PL) estimator of S. She and Cheng (1984) obtained some

asymptotic properties of that estimator. Reid (1981) studied

influence functions for any Fr~chet-differentiable function of the

PL estimator, gave the influence function of the PL quantile

function, and obtained the same asymptotic normality for the PL

quantile function as Cheng (1984) did. Padgett (1986) proposed a

kernel-type estimator which smoothed the PL quantile function.

The intent of this paper is to propose and study a

generalized PL quantile estimator based on right-censored data.

This generalized PL quantile estimator is obtained by averaging

subsample PL quantile estimates over all subsamples with subsample

size k from a right-censored sample of size n, vhere 1< k< n.

When censoring is not present, this generalized PL quantile

estimator becomes the generalized quantile estimator proposed by

Kaigh and Lachenbruch (1982).

It will be shown that under some nonrestrictive conditions

the generalized PL quantile estimator satisfies the properties of

U-statistics, and the asymptotic normality for the estimator is

presented in Section 3. It should be mentioned that the order

statistic methods used by Kaigh and Lachenbruch (1982) to obtain

an expression for the asymptotic variance of the generalized

sample quantile function for uncensored data cannot be used in the
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case of right-censored observations. This is due to the unequal

random jumps in the PL distribution function. Based on the

results of a small Monte Carlo simulation study reported in

Section 4, in many cases there is a subsample size k for which the

generalized PL quantile estimator performs better than the PL

quantile estimator in the sense of smaller estimated mean squared

errors.

For the generalized PL quantile estimator, one problem is the

optimal choice (in some sense) of the subsample size k. Since no

results on the exact mean squared error of the proposed estimator

are currently available, the subsample size that minimizes the

mean squared error cannot be obtained. Bootstrap methods for

randomly right-censored data (Efron 1981) might be used in some

cases, however, to estimate the optimal subsample size from the

data but would require extensive amounts of computer time. This

procedure is still under study.

2. GENERALIZED PL QUANTILE ESTIMATOR

L be the true survival times of n items orLet X1 ,...,IX n b h resria ie fnieso

individuals that are censored on the right by a sequence

U1, ...,Un, which are independent random variables with identical

distribution H (usually unknown). It is assumed that the X0 's are

nonnegative independent identically distributed random variables

with common unknown distribution function F0 and unknown quantile

function Q0 (p)- -inf(t: Fo(t) >p), Ops1.

The observed right-censored data are denoted by the pairs

(Xi, A i), i-1,...,n, where

Xi -min(X0, Ui), Ai-i if X < Ui

WO if x > U.

Thus, it is known which observations are times of failure or death

and which ones are censored or loss times. For this model the

distribution function of X is F=1-(1-F0 )(1-H).

Based on the censored sample (Xi, Ai), i-l,2,.. .,n, a popular

estimator of the survival function 1-F0 (t) at t>O is the PL

estimator, proposed by Kaplan and Meier (1958) as the

"nonparametric maximum likelihood estimator." Efron (1967) showed

W..W. I
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that this estimator is "self-consistent." Let (ZiAi ),

i-1,...,n, denote the ordered Xi's along with their corresponding

Ai's. Then the PL estimator of 1-F0 (t)

is defined by

Pn(t) - 1, 0 < t < ZI ,n
k-1

W n~ ( n-i+ )Ai, Zk < t<Z=m k n - +1 ' k-1 -t k ?

k- 2,....,n

-0, Zn <t.

Denote the PL estimator of F0(t) by Fn = 1-Pn.

Based on randomly right-censored data, it is natural to

estimate the quantile function Q0 (p) by the PL quantile function
On(Xi, ,...,Xn,An;P)'n(P)-infft: Fn(t)>p). Cheng (1984)

obtained asymptotic normality results for on' Reid (1981) got the

influence curve for On . 0

A generalized PL quantile estimator of Q (p), 0_pg1, based on

the randomly right-censored observations (Xi,i), i-l,...,n is

defined as follows:

For a fixed integer k, 1 < k < n, consider the selection of a

simple random sample (Xki, ki),iml,...,k (without replacement)

from the right-censored data (Xi,Ai), i-l,...,n. By using this

subsample (Xki,4ki), i-l,.:.,k, the PL pth quantile estimator

Qk(Xk1,611,...,Xkktk;P)EQk(p), 0 < p 1, is obtained as defined

above. Then the generalized PL quantile Kp;k;n, 0 p 1, is

defined to be the average of the subsample PL pth quantile

estimators over all ( ) subsamples of size k from (Xi,6),

i-1,...,n. Therefore

K * 1 EQk(p), (2.1)
p;k;n () Cn

where C indicates that the summation is over all combinationsn
(kl,...,kk) of k integers selected from (1,...,n). Subject to the

obvious constraint 1<k<n, the assumed subsample size is arbitrary

and the choice k-n in (2.1) gives Kp;k;nuQn . Thus, the statistics

defined by (2.1) form a collection of "generalized quantile

estimators" which includes the usual PL quantile estimator. This

11A4 r
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estimator (2.1) is obviously a U-statistic (Hoeffding, 1984) with

kernel Ok which is symmetric with respect to (Xl, l),...,(XkY)

A PL quantile Ok is not in general an unbiased estimator of

the corresponding quantile of the lifetime distribution, although

Lio and Padgett (1986) have shown that any bias becomes negligible

with increasing sample size k. Appealing to a monotonicity

principle would suggest that the subsampling scheme provides an

estimator Kp;k;n of with bias magnitude exceeding that of the

PL quantile estimator Qn(Xi, l,...,Xn;p). However, it would

seem plausible also that the averaging procedure might result in a

reduction of sampling variability which is adequate to decrease

the mean squared error of estimation. This propefty will be

indicated in the Monte Carlo simulations reported in Section 4.

Due to the censoring, Kp;k;n is not a simple linear

combination of order statistics of lifetime data. When AiI1,

i-l,..,n (i.e. no observation is censored), the generalized PL

quantile estimator reduces to the estimator proposed by Kaigh and

Lachenbruch (1982) which is a linear combination of order

statistics of the random sample. They then used order statistic

properties to get the asymptotic variance and mean squared error

for their generalized quantile estimator. In the case of random

right-censoring, similar results for the variance, bias, and mean

squared error of the generalized PL quantile estimator and the

mean squared consistency of the generalized PL quantile estimator

seem to be difficult to obtain under general conditions on F0 and

H. Some asymptotic results, however, have been obtained under

reasonable conditions and are discussed in the next section.

3. SOME ASYMPTOTIC RESULTS

In this section, asymptotic normality for the generalized PL

quantile estimator is presented. The somewhat lengthy proof of

Theorem 3.2 will be given in the Appendix.

For a distribution function G, let T Gsup(t: G(t)<1).

Theorem 3.1. Let p be such that Op< min(1, TH(QO)}. Suppose H

is continuous and 0 is differentiable in a neighborhood of p with
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bounded first derivative on a neighborhood of p. If for fixed
2 1/21<k<n, E((Qk(p)) )< -, then n (Kp ;k ;

n - U p;n) > Z in

distribution as n 4 w, where u p;n - E(Kp;k;n) 2and Z is a normal

random variable with mean zero and variance 'p;k

k2var(E(Qk(p) lX1)).

The proof of Theorem 3.1 follows from U-statistic properties

of Hoeffding (1948).

Due to censoring, a simple expression for the asymptotic

variance of this generalized PL quantile estimator Kp;k;n is

difficult to get, and the bias term is also unknown. Therefore,

theoretical comparison of this generalized PL quantile and PL

quantile estimators in terms of asymptotic variance or in terms of

mean squared error is still not available. However, simulation

results presented in the Section 4 indicate a range of possible

values of subsample size k for which the mean squared errors of

K p;k;n are less than those of the PL quantile estimator for each

p.

By U-statistic properties (Hoeffding, 1948), it is easy to

show for fixed 1<k<n, n var(Kp;k;n) decreases to lower limita o2

Apk
In fact, an immediate application of Theorems 5.1 and 5.2 of

Hoeffding (1948), gives the following corollary.

Corollary3.1. For O< p < min ( 1, TH(Q0)) and fixed l <n,

we have a p;k n var(Kp;k;n) k varOk(p).

In Theorem 3.1 and Corollary 3.1 the existence of second

moments of the PL quantile estimator was assumed. Lio and Padgett

(1986) has proven that for sufficiently large k, EI(Ok(p)) J is

finite and the bias becomes negligible. Therefore, we develop a

companion result to Theorem 3.1 which provides the asymptotic

normality of the generalized PL quantile estimator as the

subsample size also increases to infinity.

Theorem 3.2. Let p be such that Op< min(l, TH(QO)). Suppose H

and F0 are continuous and 0 is differentiable in a neighborhood

t-"
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of p with bounded first derivative on a neighborhood of p. If kn

4 and lim inf(kn/n) - c ( > 0) as n , vhere c is some

constant, then

n /2(Kp;kn;n - a (p)) 4 Z in distribution,

where Z is a normal random variable with mean zero and variance

a2 . 00'P 2 G-)2 Ip dx
p - 0() (l0p) J (1-x)2 (1-H(Q0 (x)))

Note that the limiting distribution in Theorem 3.2 is the

same as that for on(p) obtained by Cheng (1984).

4. SOME SIMULATION RESULTS

Often only small samples are available in real situations due

to the expense or difficulties to obtain lifetime data. Hence,

some investigation of the small sample properties of Kp;k;n is

needed. Therefore, a small Monte Carlo simulation study was

performed for two common families of lifetime distributions.

These distributions are the exponential distribution with density

f(x)= 1 exp(-Ox), x>O, 0-1, and the Weibull distribution with

density

f(x)- I R(-)%'exp(Y ), x >0,

(c,0)-(0.5,1), (2,1), (;,5). Two censoring distributions H were

used: exponential with density h(u)-e - u , u>0, X>O, and uniform

on the interval (0, X), >0.

The parameter X of the censoring distribution was determined

to give either 30% or 50% censoring. That is, X was determined so

that the probability of a censored observation, pr(X0 > U )-0.3 or

0.5, at least approximately. This probability was calculated by
numerical integration using the midpoint rule when it could not be

obtained exactly. The value of X is reported in the resulting

table for each case.

Since the generalized PL quantile estimator is not a linear

combination of order statistics of lifetime data and it can not be

simplified, the simulation procedure was the following: For given

sample size n, let 1k<n.
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01 0
Step 1. A random sample of size n, X ,...,X n was generated from

the lifetime distribution.

Step 2. A random sample U1,...,U n was generated from the

scensoring distribution.

Step 3. The censored sample (X,61 ),... ,(Xn,&n) was obtained by
X i -mn(XiU i)

(1 if X. a

0 if X - Ui,

Step 4. Take a random sample of pairs (XkiAk), wl-,...,k,

(without replacement) from (Xiai), i-l,...,n.

Step 5. Order the Xki's, i-1,...,k, from the smallest to the

largest.

Step 6. Compute the PL estimator of lifetime distribution based

on the chosen subsample of size k.

Step 7. For each value p-0.10, 0.25, 0.50, 0.75, 0.90, 0.95,

compute the PL quantile estimator based on the chosen

subsample.

The above procedure (from step 4 to step 7) was repeated for

all ( ) different subsamples.
Step 8. Average all ( subsample results to get

SrKp;k;n
Repeat step 1 through step 8 for N samples.

Step 9. The mean squared error, sample variance, and bias of

K was computed over all N samples.
p;k;n

Step 10. For each 1<k<n and each p, the ratios of mean squared

error for PL quantile estimator and mean squared error

for Kp;k;n were calculated.

For given sample size n, this simulation procedure needs

2n - 1 loops for each sample, therefore a large amount of cpu time

was required for each simulation. For example: When N-200, n=20,

the required cpu time is over 10 days on a DEC VAX 11-750

computer. When n=30, the cpu time is over 30 days on a DEC VAX

11-750 computer and hence is impractical. It seems that cpu time
increases with exponential rate when sample size n increases.

Therefore, sample sizes of n=10, 20 were chosen in the simulation
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study, and for each case simulated (i.e. each distribution, p, and

sample size combination), 200 censored samples were generated

using the random number generator in the International

Mathematical and Statistical Library (IMSL, 1982) on an FPS 264

attached processor to an IBM 3081 computer. For each simulation

case using n=20, N-200, the cpu time was 24.75 seconds on that

system.

Some of the results of the simulations are shown in Tables

4.1-4.12 which contain the ratios of estimated mean squared error

for PL quantile estimator and estimated mean squared error for the

generalized PL quantile estimator, MSE(Qn(P))/MSE(K p;k;n).

In each case, for p<0.90, there is a k value for which Kp;k;n

has smaller estimated mean squared error than that of the PL

quantile estimator. In particular, this is true for several k

values for the median estimators Ko.5;k;n . For small p and large

p, those k values such that Kp;k;n has smaller mean squared error

than the PL quantile estimator are close to the sample size n. In

all cases, the subsample size k giving the largest ratio of

estimated mean squared error tends to decrease with p up to about

0.5, and then increase for larger p. The parameter k determines

the amount of smoothing of this estimator, small k indicating more

smoothing. Therefore, more smoothing is needed in the middle of

the distribution than in the tails to decrease the mean squared

error of the generalized PL quantile estimator.

Increasing the amount of censoring from 30X to 50% seems to

have little effect on the estimated ratio of mean squared errors,

especially for large values of p. Also, the behavior of the

estimator is similar for the two censoring distributions used in

the simulations.

5. AN EXAMPLE

As an example of the generalized PL quantile estimator, 15

observations were chosen from the lung cancer data (standard,

squamous) in Data Set I of Kalbfleisch and Prentice (1980,

p. 223). The data, transformed to "months," are shown in Table

5.1, where "+" denotes a censored observation. So, A4-AS.0 and

VN *
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all other Ai 's are one. The quantile estimators Kp;k;n computed

from this data with k=8,10,13 are shown in Figures 5.1-5.3 along

with the PL quantile, shoving the smoothing that has been

obtained.

TABLE 5.1 EXAMPLE DATA

i 1 1 2 3 4 5 6 7 8

Zi 0.27 0.33 0.37 0.83+  1.40 2.40 2.73 3.33+

i 9 10 11 12 13 14 15

Zi 3.67 3.93 4.20 4.80 7.60 10.47 13.70

APPENDIX

In order to prove Theorem 3.2, the representation of Peterson

(1977) for the Kaplan-Meier estimate Fn(t) of the lifetime

distribution is used. The PL p-th quantile estimate Qk( p) based

on sample (Xi,Ai), i=l,...,k, is considered as a function

V(Su,Sc,p) of two empirical subsurvival functions Sk , Sk, where

i=1

4.-
1-S~~ c t__L xi_<t , yoi.0

i.1

u c
The corresponding p-th quantile is the value of V at (S ,s )

where S U(t)=P[Xi>t, 6i-1] and S C(t)=P[Xi>t, 6101. Let 0 be the
space of subsurvival functions, i.e. the space of decreasing left

continuous functions from R into [O,=], where c_<1. Let I1V-S 1_S ,1
=sup I V(X)-Si(x) I where W1 and S1 belong to 3. Let 02 be the

product space of 0 and itself, and define a norm on p2 such that

for any 1 , 2  0 I l3, -V2 12 -IlVn- 112+llw12 -v22112, where

ij is the jth component of Vi, J-1,2, 1-1,2. Clearly, I 1W1 -V211

IIlw 1-wl2 l+IW12-W22 11. . Reid (1981) proved that V is

Fr~chet-differentiable at Su and Sc with respect to 11I1. in each

argument Su and Sc for 0<p< min(1, TH(QO)), and has

continuous partial derivatives. Therefore, V is Frichet-

differentiable at (SU,S ) with repect to 11-11 for
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O< p < min(l, TH(Q0))0 and

v(s, S, p) -v(S UsCX 4)p)kk

-~kI IYlVFsU's ;xi)(p) I[&il

k ZkIC 2(vSS ;Xi)(p) I[&ino]i1

- I IC(V,SU',SC ;s)(p)dSU(s)- I IC2 (v,SU,sC;s)(p)dSC(s)

+ o(IISk-SHI), (A.1)

where S m(SS ) and S=(SU ,sC). Now,whr k k' k

n E In (p) - v(sUsC,p)

n

S V(SI , Sc ,p)-v(sU ,sC p)

n ) Cn i kn

k k n
k

n
n-- IC (VsU sC;x )(p) I

kn i-

+ ( i--- I Isk-s [[I) o(1)
n

+ X (I( - II) o( ),

n
where IC .and IC2 are influence curves of the PL quantile function

(see Reid, 1981).

We need the following lemma to complete the proof.

Lemma 1. n1 / 2 U - > Z in distribution, where Z is a normal

random variable with mean zero and variance 0 .

Proof. Un is a U-statistic with

h(Xl, ...,Xk )m ' 'nICl I[1 61"1- -_n 2 I[6i=0]

and E(h)-O (see example 2 and p.83 of Reid, 1981).



12

It is easy to show that Var(U~ --- En (en) (nk n)
n c-i kn-cc

where for 1<c< kn
c'. -Ejh(Xl, ... • • 'X ,c+1, .. • ,Xk n)*h(Xl, ••• XcXk n +l,* • •X2k n-c) ]

,- c [ [ IC2 dFU(s) + I IC2  dFC(s)

k;n

C. 2-- a
ft 2  Op

n
1 2

Therefore, Var(U) -

Let V* - E h(X)n n -- .1 1 l( i
i-i

n n

SIC I 1 ]+ IC2 I
n i 1 6 1 -1.

where h1 (x) - E[h(x,X2,...,Xk )]. Since Elh 2  < - (Reid, 1981),
n

using the same argument as the proof of Theorem 3.3.13 of Randles

and Wolfe (1979), it is easy to get

*2 2 *2
n E[(U n jmnE[(Un- * nE[V n I - 2nE[U n V* n

Var(U n) + a 
2 -2k 2

n p ,,n

Reid (1981) has proven that n1/2 V_ -> Z in distribution.n

Therefore n1/ 2 Un -> Z in distribution. //

Since 1I sk- sll Ise - s 11+ I I s k-Su I1
nfl n kn

and k1/2, Is -S -0(1), k/2S u - Sul 0 (1), by
n  [k n p n k n p

using a basic argument the following Lemma is easy to prove.

k1/2

Lemma 2. n In r I 'sk -sII - 0 p(1).
(k )
n

With Lemma 1 and Lemma 2 and (A.1), letting kn ->- and

lim inf(kn/n) -c (>0) for some constant c as n-> -,

Theorem 3.2 is proven. II

• qU***q , 'U , , b,1 . - , ",. " - ..r" •". "€ "- ", "p " " :r ' :"" ", - w . ." -"t
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